RESEARCHERS

POSTDOCTORAL RESEARCHERS

1.

Ph.D. from Rensselaer Polytechnic Institute (2023.10 ~)

Dr. Bumsoo Park (๋ฐ•๋ฒ”์ˆ˜ ๋ฐ•์‚ฌ)

AIX: Learning-based Control Algorithms, AI-driven Design

b.park@kaist.ac.kr

GRADUATE STUDENTS

Ph.D. Students

2.

MS/Ph.D. Candiate (2020.09 ~)

Keonhyeok Park (๋ฐ•๊ฑดํ˜)

AIX: Acoustics, Bio

khpark0409@postech.ac.kr

3.

MS/Ph.D. Candidate (2021.03 ~)

Jongmok Lee (์ด์ข…๋ชฉ)

AIX: PINN, Operator Learning

jongmok7@postech.ac.kr

4.

Ph.D. Student (2024.09 ~)

Jaejung Park (๋ฐ•์žฌ์ •)

AIX: Materials

parkfrank01@kaist.ac.kr

MS Students

5.

MS Student (2023.09 ~)

Chaeyun Won (์›์ฑ„์œค)

AIX: Healthcare AI, Operator Learning

wonchaeyun99@postech.ac.kr

6.

MS Student (2024.03 ~)

Hyeokjin Kweon (๊ถŒํ˜์ง„)

AIX: PINN

leonkweon@kaist.ac.kr

7.

MS Student (2025.03 ~)

Yenee Oh (์˜ค์˜ˆ๋‹ˆ)

AIX:ย 

yeneeoh@kaist.ac.kr

STAFF

ย Start Name

ALUMNI

Ph.D.

ย  "Leveraging Physics Knowledge in Deep Learning for Manufacturing Systems"

ย  "Manufacturing Process Monitoring Methods using Deep Learning: from Prediction to Diagnosis"

ย  "Knowledge-guided Deep Learning Approaches for Acoustic Environment Measurement"

ย  "Industrial Artificial Intelligence from Data Analytics to Simulation"

ย  "Towards Deep Learning-enabled Engineering for Expedited Understanding and Mitigation of Physical Phenomena"

"Deep Learning for Microscopy Image Analysis in Materials Science: Restoration and Recognition"

"Battery Health Management Through Physics-Informed Neural Networks: Thermal Runaway Modeling and Capacity Estimation"


MS

ย  "Machine Learning-based Surrogate Modeling to Expedite the Exploration of the Extensive Chemical Space of MXenes"

ย  "Surrogate Models for Predicting Elastic Moduli of Metal-Organic Frameworks via Multiscale Features"

ย  "Deep Learning-based Vibration Signal Generation with Frequency-Amplitude Variability"

"Generative Neural Networks in Industrial Applications: Acoustic Metaporous Materials Design and Virtual Vibration Signal Synthesis"

"Training Strategy for Physics-informed Neural Networks with a Focus on Fluid Dynamics"

"Active Learning Platform for Accelerating the Search of High-Voltage Cathode Materials in an Extensive Chemical Space"

"End Point Oxygen and Temperature Prediction based on Feature Clustering in Basic Oxygen Furnace Steelmaking"

"Lightweight Convolutional Neural Network for Real-time Fault Diagnosis on Edge Device"

ย "Attention-based Explainable Feature Extraction Model for Anomaly Detection in Gearbox"

"Robust Machine Learning Method for Surface Crack Prediction of Continuous Casting Steel"

"Deep Learning Methods to Enhance the Temporal Resolution in Functional Biomedical Imaging"

"Directed Graph Based Refinement of 3D Human Motion Data using Spatial-Temporal Information"

"Deep Learning-based Analysis on Physical Factors of Bar Warping in Rolling Process"

"Convolutional Neural Network based Small Bowel Lesion Detection in Capsule Endoscopy"

"Fault Diagnostics for Rotating Machinery using Deep Learning: Ensemble Model of Frequency Spectrum, Spectrogram, and Orbit"

"Deep Learning-based Object Tracking in Soccer Data"

"Mechanical Properties Assessment and Reliability Verification for FDM 3D Printed Products"

"Deep Learning Applications in Manufacturing: Human Motion Recognition and Sound-based Fault Detection"

"Machine Learning Toolbox and PCA Visualization for Data-Driven PHM"

"Statistical Approaches for Fault Diagnostics and Root Cause Analysis with Industrial Applications: MLCC and Rotating Machinery"


Postdoc

RESEARCH COLLABORATORS

ํฌํ•ญ๊ณต๊ณผ๋Œ€ํ•™๊ต ์ง„ํ˜„๊ทœ, ์žฅ์ง„์•„, ๊น€์ฒ ํ™, ๊น€ํ˜•์„ญ, ์ด๋™ํ™”, ์ตœ๋ฏผ์„ ๊ต์ˆ˜

ํ•œ์–‘๋Œ€ํ•™๊ต ์˜ค๊ธฐ์šฉ ๊ต์ˆ˜

University of Wisconsin-Madison Prof. Sangkee Min

์นด์ด์ŠคํŠธ ๊ธฐ๊ณ„๊ณตํ•™๊ณผ ์‹ฌ๊ธฐ๋™ ๊ต์ˆ˜, ์ตœ์ •์šฐ ๊ต์ˆ˜

๊ฒฝํฌ๋Œ€ํ•™๊ต ์ž„์žฌํ˜ ๊ต์ˆ˜, ๊น€์ง„๊ท  ๊ต์ˆ˜

์—ฐ์„ธ๋Œ€ํ•™๊ต ๋ฏผ๊ฒฝ๋ฏผ ๊ต์ˆ˜

์ค‘์•™๋Œ€ํ•™๊ต ๋ฐ•ํ•ด์„  ๊ต์ˆ˜

ํฌ์Šค์ฝ”ํ™€๋”ฉ์Šค ๋ฏธ๋ž˜๊ธฐ์ˆ ์—ฐ๊ตฌ์› AI์—ฐ๊ตฌ์†Œ ์ตœํ˜ธ, ์˜ˆ์ธ์ˆ˜, ํ™์ง€์ˆ™ ๋ฐ•์‚ฌ

ํ•œ๊ตญ๊ธฐ๊ณ„์—ฐ๊ตฌ์› (KIMM) ์„œ์œคํ˜ธ, ์„ ๊ฒฝํ˜ธ, ๊น€์ฐฝํ˜„ ๋ฐ•์‚ฌ

ํ•œ๊ตญํ‘œ์ค€๊ณผํ•™์—ฐ๊ตฌ์› (KRISS) ์žฅ์ง€ํ˜ธ, ์กฐ์™„ํ˜ธ, ๋ฐ•์ถ˜์ˆ˜ ๋ฐ•์‚ฌ

ํ•œ๊ตญ์ „๋ ฅ์—ฐ๊ตฌ์› (KEPCO) ์ตœ์šฐ์„ฑ, ์†์„๋งŒ ๋ฐ•์‚ฌ

ํ•œ๊ตญ์ƒ์‚ฐ๊ธฐ์ˆ ์—ฐ๊ตฌ์› (KITECH) ์œค์ข…ํ•„ ๋ฐ•์‚ฌ

์žฌ๋ฃŒ์—ฐ๊ตฌ์› (KIMM) ๊น€์„ธ์ข…, ์ •์žฌ๋ฉด, ์‹ ๋‹ค์Šฌ ๋ฐ•์‚ฌ

ํ•œ๊ตญ๋กœ๋ด‡์œตํ•ฉ์—ฐ๊ตฌ์› (KIRO) ์ •ํ˜„์ค€ ๋ฐ•์‚ฌ

๋ถ€์ฒœ์„ฑ๋ชจ๋ณ‘์› ์ž„์„ , ๊น€ํ˜„๋ฒ” ๊ต์ˆ˜

์„œ์šธ์„ฑ๋ชจ๋ณ‘์› ์†Œํ™”๊ธฐ๋‚ด๊ณผ ์ดํ•œํฌ, ์˜ค์ฐฝ๊ต, ์ตœ์˜ํ›ˆ, ์ด๋ณด์ธ ๊ต์ˆ˜

์„œ์šธ์„ฑ๋ชจ๋ณ‘์› ์ด๋น„์ธํ›„๊ณผ ๊น€๋„ํ˜„, ๊น€์„ฑ์› ๊ต์ˆ˜

์„œ์šธ์„ฑ๋ชจ๋ณ‘์› ์‚ฐ๋ถ€์ธ๊ณผ ์ตœ์œค์ง„ ๊ต์ˆ˜